Objectives

Identify independent and dependent variables.

Write an equation in function notation and evaluate a function for given input values.

Vocabulary

 independent variable dependent variable function rule function notation
Why learn this?

You can use a function rule to calculate how much money you will earn for working specific amounts of time.

Suppose Tasha baby-sits and charges $\$ 5$ per hour.

Time Worked (h) \boldsymbol{x}	1	2	3	4
Amount Earned (\$) \boldsymbol{y}	5	10	15	20

The amount of money Tasha earns is $\$ 5$ times the number of hours she works. Write an equation using two different variables to show this relationship.

Amount earned is $\$ 5$ times the number of hours worked.

Tasha can use this equation to find how much money she will earn for any number of hours she works.

E X A M P LE 1 Using a Table to Write an Equation

Determine a relationship between the x - and y-values. Write an equation.

x	1	2	3	4
y	-2	-1	0	1

Step 1 List possible relationships between the first x - and y-values.

$$
1-3=-2 \text { or } 1(-2)=-2
$$

Step 2 Determine if one relationship works for the remaining values.

$$
\begin{array}{ll}
2-3=-1 \checkmark & \\
3-3=0 \checkmark & \\
3(-2) \neq-1 x \\
4-3=1 \checkmark & \\
4(-2) \neq 1 x
\end{array}
$$

The first relationship works. The value of y is 3 less than x.
Step 3 Write an equation.

$$
y=x-3 \quad \text { The value of } y \text { is } 3 \text { less than } x
$$

1. Determine a relationship between the x - and y-values in the relation $\{(1,3),(2,6),(3,9),(4,12)\}$. Write an equation.

The equation in Example 1 describes a function because for each x-value (input), there is only one y-value (output).

The input of a function is the independent variable. The output of a function is the dependent variable. The value of the dependent variable depends on, or is a function of, the value of the independent variable. For Tasha, the amount she earns depends on, or is a function of, the amount of time she works.

E X A M P LE 2 Identifying Independent and Dependent Variables

Helpful Hint

There are several different ways to describe the variables of a function.

Independent Variable	Dependent Variable
x-values	y-values
Domain	Range
Input	Output
x	$f(x)$

Identify the independent and dependent variables in each situation.
In the winter, more electricity is used when the temperature goes down, and less is used when the temperature rises.

The amount of electricity used depends on the temperature. Dependent: amount of electricity Independent: temperature

B The cost of shipping a package is based on its weight.
The cost of shipping a package depends on its weight.
Dependent: cost Independent: weight
C The faster Ron walks, the quicker he gets home.
The time it takes Ron to get home depends on the speed he walks. Dependent: time Independent: speed

Identify the independent and dependent variables in each situation.
2a. A company charges $\$ 10$ per hour to rent a jackhammer.
2b. Camryn buys p pounds of apples at $\$ 0.99$ per pound.

An algebraic expression that defines a function is a function rule $.5 \cdot x$ in the equation about Tasha's earnings is a function rule.

If x is the independent variable and y is the dependent variable, then function notation for y is $f(x)$, read " f of x," where f names the function. When an equation in two variables describes a function, you can use function notation to write it.

The dependent variable is a function of the independent variable .

y	is a function of	x.
y	$=$	f

Since $y=f(x)$, Tasha's earnings, $y=5 x$, can be rewritten in function notation by substituting $f(x)$ for $y: f(x)=5 x$. Sometimes you will see functions written using y, and sometimes you will see functions written using $f(x)$.

EXAMPLE 3 Writing Functions

Identify the independent and dependent variables. Write a rule in function notation for each situation.

A lawyer's fee is $\$ 200$ per hour for her services.
The fee for the lawyer depends on how many hours she works.
Dependent: fee Independent: hours
Let h represent the number of hours the lawyer works.
The function for the lawyer's fee is $f(h)=200 h$.
ntify the independent and dependent variables. Write a rule in function notation for each situation.

B The admission fee to a local carnival is $\$ 8$. Each ride costs $\$ 1.50$.
The total cost depends on the number of rides ridden, plus $\$ 8$.
Dependent: total cost Independent: number of rides
Let r represent the number of rides ridden.
The function for the total cost of the carnival is $f(r)=1.50 r+8$.

Identify the independent and dependent variables. Write a rule in function notation for each situation.
3a. Steven buys lettuce that costs $\$ 1.69 / \mathrm{lb}$.
3b. An amusement park charges a $\$ 6.00$ parking fee plus $\$ 29.99$ per person.

You can think of a function as an input-output machine. For Tasha's earnings, $f(x)=5 x$, if you input a value x, the output is $5 x$.

If Tasha wanted to know how much money she would earn by working 6 hours, she could input 6 for x and find the output. This is called evaluating the function.

EXAMPLE 4 Evaluating Functions

Evaluate each function for the given input values.
A For $f(x)=5 x$, find $f(x)$ when $x=6$ and when $x=7.5$.

$$
\begin{array}{rlrlrl}
f(x) & =5 x & & f(x) & =5 x & \\
f(6) & =5(6) & & \text { Substitute } 6 \text { for } x . & f(7.5) & =5(7.5) \\
& =30 & & \text { Substitut } \\
& \text { Simplify. } & & =37.5 & & \text { Simplify } .
\end{array}
$$

Functions can be named with any letter; f, g, and h are the most common. the most common.
You read $f(6)$ as " f of $6, "$ and $g(2)$ as " g of 2."

Reading Math

Output

For $g(t)=2.30 t+10$, find $g(t)$ when $t=2$ and when $t=-5$.

$$
\begin{array}{rlrl}
g(t) & =2.30 t+10 & g(t) & =2.30 t+10 \\
g(2) & =2.30(2)+10 & g(-5) & =2.30(-5)+10 \\
& =4.6+10 & & =-11.5+10 \\
& =14.6 & & =-1.5
\end{array}
$$

For $h(x)=\frac{1}{2} x-3$, find $h(x)$ when $x=12$ and when $x=-8$.

$$
\begin{aligned}
& h(x)=\frac{1}{2} x-3 \\
& h(12)=\frac{1}{2}(12)-3 \\
& h(x)=\frac{1}{2} x-3 \\
& =6-3 \\
& h(-8)=\frac{1}{2}(-8)-3 \\
& =3 \\
& =-4-3 \\
& =-7
\end{aligned}
$$

Evaluate each function for the given input values.
4a. For $h(c)=2 c-1$, find $h(c)$ when $c=1$ and $c=-3$.
4b. For $g(t)=\frac{1}{4} t+1$, find $g(t)$ when $t=-24$ and $t=400$.

When a function describes a real-world situation, every real number is not always reasonable for the domain and range. For example, a number representing the length of an object cannot be negative, and only whole numbers can represent a number of people.

EXAMPLE 5 Finding the Reasonable Domain and Range of a Function

Manuel has already sold $\$ 20$ worth of tickets to the school play. He has 4 tickets left to sell at $\$ 2.50$ per ticket. Write a function rule to describe how much money Manuel can collect from selling tickets. Find a reasonable domain and range for the function.

Money collected from
ticket sales

$$
f(x) \quad=\$ 2.50 \quad \cdot \quad x \quad+
$$

If he sells x more tickets, he will have collected $f(x)=2.50 x+20$ dollars.
Manuel has only 4 tickets left to sell, so he could sell $0,1,2,3$, or 4 tickets. A reasonable domain is $\{0,1,2,3,4\}$.
Substitute these values into the function rule to find the range values.

x	0	1	2	3	4
$f(x)$	$2.50(0)+20$ $=20$	$2.50(1)+20$ $=22.50$	$2.50(2)+20$ 	$=25$	$2.50(3)+20$
$=27.50$	$2.50(4)+20$				
$=30$					

A reasonable range for this situation is $\{\$ 20, \$ 22.50, \$ 25, \$ 27.50, \$ 30\}$.
5. The settings on a space heater are the whole numbers from 0 to 3 . The total number of watts used for each setting is 500 times the setting number. Write a function rule to describe the number of watts used for each setting. Find a reasonable domain and range for the function.

THINK AND DISCUSS

1. When you input water into an ice machine, the output is ice cubes. Name another real-world object that has an input and an output.
2. How do you identify the independent and dependent variables in a situation?
3. Explain how to find reasonable domain values for a function.
4. GET ORGANIZED Copy and complete the graphic organizer. Use the rule $y=x+3$ and the domain $\{-2,-1,0,1,2\}$.

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

1. The output of a function is the \qquad ? variable. (independent or dependent)
2. An algebraic expression that defines a function is a \qquad ? . (function rule or function notation)

SEE EXAMPLE 2 Identify the independent and dependent variables in each situation.

SEE EXAMPLE 1 p. 245
p. 246

SEE EXAMPLE 3
p. 246

Determine a relationship between the x - and y-values. Write an equation.
3.

x	1	2	3	4
y	-1	0	1	2

4. $\{(1,4),(2,7),(3,10),(4,13)\}$
5. A small-size bottle of water costs $\$ 1.99$ and a large-size bottle of water costs $\$ 3.49$.
6. An employee receives 2 vacation days for every month worked.

Identify the independent and dependent variables. Write a rule in function notation for each situation.
7. An air-conditioning technician charges customers $\$ 75$ per hour.
8. An ice rink charges $\$ 3.50$ for skates and $\$ 1.25$ per hour.

SEE EXAMPLE 4
p. 247

Evaluate each function for the given input values.
9. For $f(x)=7 x+2$, find $f(x)$ when $x=0$ and when $x=1$.
10. For $g(x)=4 x-9$, find $g(x)$ when $x=3$ and when $x=5$.
11. For $h(t)=\frac{1}{3} t-10$, find $h(t)$ when $t=27$ and when $t=-15$.

SEE EXAMPLE 5
p. 248
12. A construction company uses beams that are 2 , 3 , or 4 meters long. The measure of each beam must be converted to centimeters. Write a function rule to describe the situation. Find a reasonable domain and range for the function. (Hint: $1 \mathrm{~m}=100 \mathrm{~cm}$)

PRACTICE AND PROBLEM SOLVING

Independent Practice	
For Exercises	See Example
$13-14$	1
$15-16$	2
$17-19$	3
$20-22$	4
23	5

Extra Practice

Skills Practice p. S10 Application Practice p. S31

Determine a relationship between the x - and y-values. Write an equation.
13.

x	1	2	3	4
y	-2	-4	-6	-8

14. $\{(1,-1),(2,-2),(3,-3),(4,-4)\}$

Identify the independent and dependent variables in each situation.
15. Gardeners buy fertilizer according to the size of a lawn.
16. The cost to gift wrap an order is $\$ 3$ plus $\$ 1$ per item wrapped.

Identify the independent and dependent variables. Write a rule in function notation for each situation.
17. To rent a DVD, a customer must pay $\$ 3.99$ plus $\$ 0.99$ for every day that it is late.
18. Stephen charges $\$ 25$ for each lawn he mows.
19. A car can travel 28 miles per gallon of gas.

Evaluate each function for the given input values.
20. For $f(x)=x^{2}-5$, find $f(x)$ when $x=0$ and when $x=3$.
21. For $g(x)=x^{2}+6$, find $g(x)$ when $x=1$ and when $x=2$.

Air Force One refers to two specially configured Boeing 747-200B airplanes. The radio call sign when the president is aboard either aircraft or any Air Force aircraft is "Air Force One."
22. For $f(x)=\frac{2}{3} x+3$, find $f(x)$ when $x=9$ and when $x=-3$.
23. A mail-order company charges $\$ 5$ per order plus $\$ 2$ per item in the order, up to a maximum of 4 items. Write a function rule to describe the situation. Find a reasonable domain and range for the function.

Transportation Air Force One can travel 630 miles per hour. Let h be the number of hours traveled. The function rule $d=630 h$ gives the distance d in miles that Air Force One travels in h hours.
a. Identify the independent and dependent variables. Write $d=630 h$ in function notation.
b. What are reasonable values for the domain and range in the situation described?
c. How far can Air Force One travel in 12 hours?
25. Complete the table for $g(z)=2 z-5$.

z	1	2	3	4
$\boldsymbol{g}(\boldsymbol{z})$				

26. Complete the table for $h(x)=x^{2}+x$.

\boldsymbol{x}	0	1	2	3
$\boldsymbol{h}(\boldsymbol{x})$				

27. Estimation For $f(x)=3 x+5$, estimate the output when $x=-6.89, x=1.01$, and $x=4.67$.
28. Transportation A car can travel 30 miles on a gallon of gas and has a 20-gallon gas tank. Let g be the number of gallons of gas the car has in its tank. The function rule $d=30 g$ gives the distance d in miles that the car travels on g gallons.
a. What are reasonable values for the domain and range in the situation described?
b. How far can the car travel on 12 gallons of gas?
29. Critical Thinking Give an example of a real-life situation for which the reasonable domain consists of $1,2,3$, and 4 and the reasonable range consists of $2,4,6$, and 8.
30. ///ERROR ANALYSIS/// Rashid saves $\$ 150$ each month. He wants to know how much he will have saved in 2 years. He writes the rule $s=m+150$ to help him figure out how much he will save, where s is the amount saved and m is the number of months he saves. Explain why his rule is incorrect.
31. Write About It Give a real-life situation that can be described by a function. Explain which is the independent variable and which is the dependent variable.

32. Marsha buys x pens at $\$ 0.70$ per pen and one pencil for $\$ 0.10$. Which function gives the total amount Marsha spends?
(A) $c(x)=0.70 x+0.10 x$
(C) $c(x)=(0.70+0.10) x$
(B) $c(x)=0.70 x+1$
(D) $c(x)=0.70 x+0.10$
33. Belle is buying pizzas for her daughter's birthday party, using the prices in the table. Which equation best describes the relationship between the total cost c and the number of pizzas p ?
(F) $c=26.25 p$
(H) $c=p+26.25$
(G) $c=5.25 p$
(J) $c=6 p-3.75$

Pizzas	Total Cost (\$)
5	26.25
10	52.50
15	78.75

35. Gridded Response What is the value of $f(x)=5-\frac{1}{2} x$ when $x=3$?

CHALLENGE AND EXTEND

36. The formula to convert a temperature that is in degrees Celsius x to degrees Fahrenheit $f(x)$ is $f(x)=\frac{9}{5} x+32$. What are reasonable values for the domain and range when you convert to Fahrenheit the temperature of water as it rises from 0° to 100° Celsius?
37. Math History In his studies of the motion of free-falling objects, Galileo Galilei found that regardless of its mass, an object will fall a distance d that is related to the square of its travel time t in seconds. The modern formula that describes free-fall motion is $d=\frac{1}{2} g t^{2}$, where g is the acceleration due to gravity and t is the length of time in seconds the object falls. Find the distance an object falls in 3 seconds. (Hint: Research to find acceleration due to gravity in meters per second squared.)

SPIRAL REVIEW

Solve each equation. Check your answer. (Lesson 2-3)
38. $5 x+2-7 x=-10$
39. $3(2-y)=15$
40. $\frac{2}{3} p-\frac{1}{2}=\frac{1}{6}$

Find the value of x in each diagram. (Lesson 2-7)
41. $\triangle A B C \sim \triangle D E F$
42. $Q R S T \sim L M N P$

Give the domain and range of each relation. Tell whether the relation is a function and explain. (Lesson 4-2)
43.

44.

x	y
-3	4
-1	2
0	0
1	2
3	-4

