1-6

	1. Vocabulary Explain v numerical expressions.	why the <i>order of operations</i> is n	ecessary for simplifying		
SEE EXAMPLE 1	Simplify each expression.				
р. 40	2. $5 - 12 \div (-2)$	3. $30 - 5 \cdot 3$	4. $50 - 6 + 8$		
L	5. $12 \div (-4)(3)$	6. $(5-8)(3-9)$	7. $16 + [5 - (3 + 2^2)]$		
SEE EXAMPLE 2	Evaluate each expression for	or the given value of the variab	ole.		
р. 41	8. $5 + 2x - 9$ for $x = 4$	9. $30 \div 2 - d$ for $d = 14$	10. $51 - 91 + g$ for $g = 20$		
L	11. $2(3+n)$ for $n = 4$	12. $4(b-4)^2$ for $b=5$	13. $12 + [20(5-k)]$ for $k = 1$		
SEE EXAMPLE 3	Simplify each expression.				
р. 41	14. 24 ÷ 4 − 10	15. $4.5 - \sqrt{2(4.5)}$	16. $5(2) + 16 \div -4 $		
L	17. $\frac{0-24}{6+2}$	18. $\frac{2+3(6)}{2^2}$	19. $-44 \div \sqrt{12 \div 3}$		
SEE EXAMPLE 4 Translate each word phrase into a numerical or algebraic expression.					
p. 42 20. 5 times the absolute value of the sum of <i>s</i> and -2					
	21. the product of 12 and the sum of -2 and 6				
22. 14 divided by the sum of 52 and -3					
SEE EXAMPLE 5 p. 42	23. Geometry The surface the expression $2\pi r(h + shown.$ (Use 3.14 for π nearest tenth.)	te area of a cylinder can be four - <i>r</i>). Find the surface area of th and give your final answer rou	nd using e cylinder nded to the $h = 7$ ft		

GUIDED PRACTICE

PRACTICE AND PROBLEM SOLVING

Independent Practice				
See Example				
1				
2				
3				
4				
5				

Extra Practice Skills Practice p. S5 Application Practice p. S28 Simplify each expression.

24. $3 + 4(-5)$	25. 20 - 4 + 5 - 2	26. 41 + 12 ÷ 2
27. $3(-9) + (-2)(-6)$	28. $10^2 \div (10 - 20)$	29. $(6+2\cdot 3) \div (9-7)^2$
30. $-9 - (-18) + 6$	31. 15 ÷ (2 − 5)	32. $5(1-2) - (3-2)$

Evaluate each expression for the given value of the variable.

	1	0	
33.	-6(3-p) for $p = 7$	34. $5 + (r+2)^2$ for $r = 4$	35. $13 - [3 + (j - 12)]$ for $j = 5$
36.	$(-4-a)^2$ for $a = -3$	37. $7 - (21 - h)^2$ for $h = 25$	38. $10 + [8 \div (q-3)]$ for $q = 2$
39.	(4r-2) + 7 for $r = 3$	40. $-2(11b - 3)$ for $b = 5$	41. $7x(3+2x)$ for $x = -1$

Simplify each expression.

42.	-4 2.5-6	43. $\frac{8-8}{2-1}$	44. $\frac{3+ 8-10 }{2}$	45. $\sqrt{3^2-5} \div 8$
46.	$\frac{-18-36}{-9}$	47. $\frac{6 5-7 }{14-2}$	48. $\sqrt{5^2-4^2}$	49. $(-6+24) \div -3 $

Translate each word phrase into a numerical or an algebraic expression.

- **50.** the product of 7 and the sum of 2 and *d*
- **51.** the difference of 3 and the quotient of 2 and 5
- **52.** the square root of the sum of 5 and -4
- **53.** the difference of 8 and the absolute value of the product of 3 and 5
- **54. Geometry** The perimeter of a rectangle can be found using the expression $2(\ell + w)$. Find the perimeter of the rectangle shown.

w = 4 in.

c. $50 \cdot 10 \div 2$

f. $50 + 10 \cdot 2$

55. Simplify each expression.

a. $50 + 10 \div 2$

d. $50 \div 10 \cdot 2$

b.	$50 \cdot 10 - 2$
e.	$50 - 10 \cdot 2$

Translate each word phrase into a numerical or algebraic expression.

56. the difference of 8 and the product of 4 and *n*

57. 2 times the sum of 9 and the opposite of *x*

58. two-thirds of the difference of -2 and 8

59. the square root of 7 divided by the product of 3 and 10

Sports At the 2004 Summer Olympics, U.S. gymnast Paul Hamm received the scores shown in the table during the individual all-around competition.

2004 Summer Olympics Individual Scores for Paul Hamm						
Event	Floor	Pommel horse	Rings	Vault	Parallel bars	Horizontal bar
Score	9.725	9.700	9.587	9.137	9.837	9.837

- **a.** Write a numerical expression to show the average of Hamm's scores. (*Hint:* The average of a set of values is the sum of the values divided by the number of values.)
- **b.** Simplify the expression to find Hamm's average score.
- **61. Critical Thinking** Are parentheses required when translating the word phrase "the sum of 8 and the product of 3 and 2" into a numerical phrase? Explain.

Translate each word phrase into a numerical expression. Then simplify.

- **62.** the sum of 8 and the product of -3 and 5
- **63.** the difference of the product of 3 and 5 and the product of 6 and 2
- **64.** the product of $\frac{2}{3}$ and the absolute value of the difference of 3 and -12

In 2004, Paul Hamm became the first American to win a gold medal in the men's allaround competition at the Olympics. He won by a margin of 0.012 point.