9.

X

y

3

9

5

25

2

4

8

81

6

36

4-2

SEE EXAMPLE

SEE EXAMPLE

p. 237

GUIDED PRACTICE

Vocabulary Apply the vocabulary from this lesson to answer each question.

- 1. Use a mapping diagram to show a relation that is not a *function*.
- **2.** The set of *x*-values for a relation is also called the <u>?</u>. (*domain* or *range*)

Express each relation as a table, as a graph, and as a mapping diagram.

p. 236		3. {(1, 1), (1, 2)}	4.	$\left\{ \left(-1, 1\right), \left(-2, \frac{1}{2}\right), \left(-3, \frac{1}{3}\right), \left(-4, \frac{1}{4}\right) \right\}$
		5. $\{(-1, 1), (-3, 3), (5, -5), (-7, 7)\}$	6.	$\{(0, 0), (2, -4), (2, -2)\}$
SEE EXAMPLE	2	Give the domain and range of each relation.		
p. 237		7. $\{(-5, 7), (0, 0), (2, -8), (5, -20)\}$	8.	$\{(1, 2), (2, 4), (3, 6), (4, 8), (5, 10)\}$

Multi-Step Give the domain and range of each relation. Tell whether the relation is a function. Explain.

10.

5 4

3 2 1

0

PRACTICE AND PROBLEM SOLVING

Express each relation as a table, as a graph, and as a mapping diagram.

15.
$$\left\{ (-2, -4), (-1, -1), (0, 0), (1, -1), (2, -4) \right\}$$

16. $\left\{ (2, 1), (2, \frac{1}{2}), (2, 2), (2, 2\frac{1}{2}) \right\}$

Give the domain and range of each relation.

17. Δ 2 0

18.	x	у	
	4	4	
	5	5	
	6	6	
	7	7	
	8	8	

Independer	nt Practice
For	See
Exercises	Example
15–16	1
17–18	2
19–20	3

Extra Practice Skills Practice p. S10 Application Practice p. S31

х

34 5 **Multi-Step** Give the domain and range of each relation. Tell whether the relation is a function. Explain.

- **21. Consumer Application** An electrician charges a base fee of \$75 plus \$50 for each hour of work. Create a table that shows the amount the electrician charges for 1, 2, 3, and 4 hours of work. Let *x* represent the number of hours and *y* represent the amount charged for *x* hours. Is this relation a function? Explain.
- **22. Geometry** Write a relation as a set of ordered pairs in which the *x*-value represents the length of a side of a square and the *y*-value represents the area of the square. Use a domain of 2, 4, 6, 9, and 11.
 - **23. Multi-Step** Create a mapping diagram to display the numbers of days in 1, 2, 3, and 4 weeks. Is this relation a function? Explain.
 - **24. Nutrition** The illustrations list the number of grams of fat and the number of Calories from fat for selected foods.
 - **a.** Create a graph for the relation between grams of fat and Calories from fat.
 - **b.** Is this relation a function? Explain.

- **25. Recreation** A shop rents canoes for a \$7 equipment fee and \$2 per hour, with a maximum cost of \$15 per day. Express the number of hours *x* and the cost *y* as a relation in table form, and find the cost to rent a canoe for 1, 2, 3, 4, and 5 hours. Is this relation a function? Explain.
- **26. Health** You can burn about 6 Calories a minute bicycling. Let *x* represent the number of minutes bicycled, and let *y* represent the number of Calories burned.
 - **a.** Write ordered pairs to show the number of Calories burned if you bicycle for 60, 120, 180, 240, or 300 minutes. Graph the ordered pairs.
 - **b.** Find the domain and range of the relation.
 - c. Does this graph represent a function? Explain.
- **27. Critical Thinking** For a function, can the number of elements in the range be greater than the number of elements in the domain? Explain.
- 28. Critical Thinking Tell whether each statement is true or false. If false, explain why.a. All relations are functions.b. All functions are relations.