## **GUIDED PRACTICE**

## **Vocabulary** Apply the vocabulary from this lesson to answer each question.

- **1.** Changing the value of b in f(x) = mx + b results in a ? of the graph. (translation or reflection)
- **2.** Changing the value of m in f(x) = mx + b results in a \_\_\_\_\_ of the graph. (translation or rotation)

Graph f(x) and g(x). Then describe the transformation from the graph of f(x) to the graph of g(x).

| SEE EXAMPLE 1           | <b>3.</b> $f(x) = x, g(x) = x - 4$                                      | <b>4.</b> $f(x) = x, g(x) = x + 1$                                                                            |
|-------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| р. 358                  | <b>5.</b> $f(x) = x, g(x) = x + 2$                                      | <b>6.</b> $f(x) = x, g(x) = x - 6.5$                                                                          |
| SEE EXAMPLE 2<br>p. 358 | 7. $f(x) = x, g(x) = \frac{1}{4}x$<br>9. $f(x) = 2x - 2, g(x) = 4x - 2$ | <b>8.</b> $f(x) = \frac{1}{5}x + 3$ , $g(x) = x + 3$<br><b>10.</b> $f(x) = x + 1$ , $g(x) = \frac{1}{2}x + 1$ |

Graph f(x). Then reflect the graph of f(x) across the y-axis. Write a function g(x) to describe the new graph.

**11.**  $f(x) = -\frac{1}{5}x$ **12.** f(x) = 2x + 4**13.**  $f(x) = \frac{1}{3}x - 6$ **14.** f(x) = 5x - 1

Graph f(x) and g(x). Then describe the transformations from the graph of f(x) to the graph of g(x).

**15.** 
$$f(x) = x, g(x) = 2x - 2$$
**16.**  $f(x) = x, g(x) = \frac{1}{3}x + 1$ **17.**  $f(x) = -x - 1, g(x) = -4x$ **18.**  $f(x) = -x, g(x) = -\frac{1}{2}x - 3$ 

**19.** Entertainment For large parties, a restaurant charges a reservation fee of \$25, plus \$15 per person. The total charge for a party of x people is f(x) = 15x + 25. How will the graph of this function change if the reservation fee is raised to \$50? if the perperson charge is lowered to \$12?

## PRACTICE AND PROBLEM SOLVING

Graph f(x) and g(x). Then describe the transformation(s) from the graph of f(x) to the graph of g(x).

**20.** 
$$f(x) = x, g(x) = x + \frac{1}{2}$$
  
**21.**  $f(x) = x, g(x) = x - 4$   
**22.**  $f(x) = \frac{1}{5}x - 1, g(x) = \frac{1}{10}x - 1$   
**23.**  $f(x) = x + 2, g(x) = \frac{2}{3}x + 2$ 

Graph f(x). Then reflect the graph of f(x) across the y-axis. Write a function g(x) to describe the new graph.

**24.** 
$$f(x) = 6x$$

**25.** f(x) = -3x - 2

Graph f(x) and g(x). Then describe the transformations from the graph of f(x) to the graph of g(x).

**26.** 
$$f(x) = 2x, g(x) = 4x - 1$$
 **2**

**27.** 
$$f(x) = -7x + 5$$
,  $g(x) = -14x$ 

p. 360

p. 360

See

Example

1

2

3

4

5

SEE EXAMPLE

**SEE EXAMPLE** 

Independent Practice

Extra Practice

Application Practice p. S32

Skills Practice p. S13

For

Exercises

20-21

22-23

24-25

26-27

28

**28.** School The number of chaperones on a field trip must include 1 teacher for every 4 students, plus 2 parents total. The function describing the number of chaperones for a trip of *x* students is  $f(x) = \frac{1}{4}x + 2$ . How will the graph change if the number of parents is reduced to 0? if the number of teachers is raised to 1 for every 3 students?

Describe the transformation(s) on the graph of f(x) = x that result in the graph of g(x). Graph f(x) and g(x), and compare the slopes and intercepts.

| <b>29.</b> $g(x) = -x$            | <b>30.</b> $g(x) = x + 8$  | <b>31.</b> $g(x) = 3x$      |
|-----------------------------------|----------------------------|-----------------------------|
| <b>32.</b> $g(x) = -\frac{2}{7}x$ | <b>33.</b> $g(x) = 6x - 3$ | <b>34.</b> $g(x) = -2x + 1$ |

## Sketch the transformed graph. Then write a function to describe your graph.

- **35.** Rotate the graph of f(x) = -x + 2 until it has the same steepness in the opposite direction.
- **36.** Reflect the graph of f(x) = x 1 across the *y*-axis, and then translate it 4 units down.
- **37.** Translate the graph of  $f(x) = \frac{1}{6}x 10$  six units up.

**Hobbies** A book club charges a membership fee of \$20 and then \$12 for each book purchased.

- **a.** Write and graph a function to represent the cost *y* of membership in the club based on the number of books purchased *x*.
- **b. What if...?** Write and graph a second function to represent the cost of membership if the club raises its membership fee to \$30.
- c. Describe the relationship between your graphs from parts **a** and **b**.

Describe the transformation(s) on the graph of f(x) = x that result in the graph of g(x).

| 39. | g(x) = x - 9               | 40. | g(x) = -x  | 41. | g(x) = 5x             |
|-----|----------------------------|-----|------------|-----|-----------------------|
| 42. | $g(x) = -\frac{2}{3}x + 1$ | 43. | g(x) = -2x | 44. | $g(x) = \frac{1}{5}x$ |

**45.** Careers Kelly works as a salesperson. She earns a weekly base salary plus a commission that is a percent of her total sales. Her total weekly pay is described by f(x) = 0.20x + 300, where *x* is total sales in dollars.

- a. What is Kelly's weekly base salary?
- b. What percent of total sales does Kelly receive as commission?
- **c. What if...?** What is the change in Kelly's salary plan if the weekly pay function changes to g(x) = 0.25x + 300? to h(x) = 0.2x + 400?
- **46.** Critical Thinking To transform the graph of f(x) = x into the graph of g(x) = -x, you can reflect the graph of f(x) across the *y*-axis. Find another transformation that will have the same result.
- 47. Write About It Describe how a reflection across the *y*-axis affects each point on a graph. Give an example to illustrate your answer.

**48.** This problem will prepare you for the Multi-Step Test Prep on page 364.

- **a.** Maria is walking from school to the softball field at a rate of 3 feet per second. Write a rule that gives her distance from school (in feet) as a function of time (in seconds). Then graph.
- **b.** Give a real-world situation that could be described by a line parallel to the one in part **a**.
- c. What does the *y*-intercept represent in each of these situations?





MULTI-