THINK AND DISCUSS

- Explain how multiplying the second equation in a system by −1 and eliminating by adding is the same as elimination by subtraction. Give an example of a system for which this applies.
- **2.** Explain why it does not matter which variable you solve for first when solving a system by elimination.

he Solving Systems of Linear Equations Substitution Elimination using addition or subtraction

6-3 Exercises

GUIDED PRACTICE

Solve each system by elimination.

(now

1. $\begin{cases} -x + y = 5 \\ x - 5y = -9 \end{cases}$ 2. $\begin{cases} x + y = 12 \\ x - y = 2 \end{cases}$ 3. $\begin{cases} 2x + 5y = -24 \\ 3x - 5y = 14 \end{cases}$ 4. $\begin{cases} x - 10y = 60 \\ x + 14y = 12 \end{cases}$ 5. $\begin{cases} 5x + y = 0 \\ 5x + 2y = 30 \end{cases}$ 6. $\begin{cases} -5x + 7y = 11 \\ -5x + 3y = 19 \end{cases}$ 7. $\begin{cases} 2x + 3y = 12 \\ 5x - y = 13 \end{cases}$ 8. $\begin{cases} -3x + 4y = 12 \\ 2x + y = -8 \end{cases}$ 9. $\begin{cases} 2x + 4y = -4 \\ 3x + 5y = -3 \end{cases}$

10. Consumer Economics Each family in a neighborhood is contributing \$20 worth of food to the neighborhood picnic. The Harlin family is bringing 12 packages of buns. The hamburger buns cost \$2.00 per package. The hot-dog buns cost \$1.50 per package. How many packages of each type of bun did they buy?

PRACTICE AND PROBLEM SOLVING

Independent Practice			
For Exercises	See Example		
11–13	1		
14–16	2		
17–19	3		
20	4		

Extra Practice Skills Practice p. S14 Application Practice p. S33 Solve each system by elimination.

11. $\begin{cases} -x + y = -1 \\ 2x - y = 0 \end{cases}$	12. $\begin{cases} -2x + y = -20\\ 2x + y = 48 \end{cases}$	13. $\begin{cases} 3x - y = -2 \\ -2x + y = 3 \end{cases}$
14. $\begin{cases} x - y = 4 \\ x - 2y = 10 \end{cases}$	15. $\begin{cases} x + 2y = 5\\ 3x + 2y = 17 \end{cases}$	16. $\begin{cases} 3x - 2y = -1 \\ 3x - 4y = 9 \end{cases}$
17. $\begin{cases} x - y = -3\\ 5x + 3y = 1 \end{cases}$	18. $\begin{cases} 9x - 3y = 3\\ 3x + 8y = -17 \end{cases}$	19. $\begin{cases} 5x + 2y = -1 \\ 3x + 7y = 11 \end{cases}$

20. Multi-Step Mrs. Gonzalez bought centerpieces to put on each table at a graduation party. She spent \$31.50. There are 8 tables each requiring either a candle or vase. Candles cost \$3 and vases cost \$4.25. How many of each type did she buy?