GUIDED PRACTICE

SEE EXAMPLE 1 p. $447 \quad \square$

SEE EXAMPLE 2 Simplify.
p. 447
\square
2. 6^{-2}
3. 3^{0}
8. 10^{-2}
4. -5^{-2}
5. 3^{-3}
6. 1^{-8}
7. -8^{-3}
9. $(4.2)^{0}$
10. $(-3)^{-3}$
11. 4^{-2}

SEE EXAMPLE 3 Evaluate each expression for the given value(s) of the variable(s).
p. 447
12. b^{-2} for $b=-3$
13. $(2 t)^{-4}$ for $t=2$
14. $(m-4)^{-5}$ for $m=6$
15. $2 x^{0} y^{-3}$ for $x=7$ and $y=-4$

SEE EXAMPLE 4 Simplify.
p. 448
16. $4 m^{0}$
17. $3 k^{-4}$
18. $\frac{7}{r^{-7}}$
19. $\frac{x^{10}}{d^{-3}}$
20. $2 x^{0} y^{-4}$
21. $\frac{f^{-4}}{g^{-6}}$
22. $\frac{c^{4}}{d^{-3}}$
23. $p^{7} q^{-1}$

PRACTICE AND PROBLEM SOLVING

Independent Practice For Exercises	See Example
24	1
$25-36$	2
$37-42$	3
$43-57$	4

Extra Practice
Skills Practice p. S16
Application Practice p. S34
24. Biology One of the smallest bats is the northern blossom bat, which is found from Southeast Asia to Australia. This bat weighs about 2^{-1} ounce. Simplify this expression.

Simplify.
25. 8^{0}
26. 5^{-4}
27. 3^{-4}
28. -9^{-2}
29. -6^{-2}
30. 7^{-2}
31. $\left(\frac{2}{5}\right)^{0}$
32. 13^{-2}
33. $(-3)^{-1}$
34. $(-4)^{2}$
35. $\left(\frac{1}{2}\right)^{-2}$
36. -7^{-1}

Evaluate each expression for the given value(s) of the variable(s).
37. x^{-4} for $x=4$
38. $\left(\frac{2}{3} v\right)^{-3}$ for $v=9$
39. $(10-d)^{0}$ for $d=11$
40. $10 m^{-1} n^{-5}$ for $m=10$ and $n=-2$
41. $(3 a b)^{-2}$ for $a=\frac{1}{2}$ and $b=8$
42. $4 w^{v} x^{v}$ for $w=3, v=0$, and $x=-5$

Simplify.
43. k^{-4}
44. $2 z^{-8}$
45. $\frac{1}{2 b^{-3}}$
46. $c^{-2} d$
47. $-5 x^{-3}$
48. $4 x^{-6} y^{-2}$
49. $\frac{2 f^{0}}{7 g^{-10}}$
50. $\frac{r^{-5}}{s^{-1}}$
51. $\frac{s^{5}}{t^{-12}}$
52. $\frac{3 w^{-5}}{x^{-6}}$
53. $b^{0} c^{0}$
54. $\frac{2}{3} m^{-1} n^{5}$
55. $\frac{q^{-2} r^{0}}{s^{0}}$
56. $\frac{a^{-7} b^{2}}{c^{3} d^{-4}}$
57. $\frac{h^{3} k^{-1}}{6 m^{2}}$

Evaluate each expression for $x=3, y=-1$, and $z=2$.
58. z^{-5}
59. $(x+y)^{-4}$
60. $(y z)^{0}$
61. $(x y z)^{-1}$
62. $(x y-3)^{-2}$
63. x^{-y}
64. $(y z)^{-x}$
65. $x y^{-4}$
66. ///ERROR ANALYSIS/// Look at the two equations below. Which is incorrect? Explain the error.
(A)
$5 x^{-3}=\frac{1}{5 x^{3}}$
(B)

$$
5 x^{-3}=\frac{5}{x^{3}}
$$

Simplify.
67. $a^{3} b^{-2}$
68. $c^{-4} d^{3}$
69. $v^{0} w^{2} y^{-1}$
70. $\left(a^{2} b^{-7}\right)^{0}$
71. $-5 y^{-6}$
72. $\frac{2 a^{-5}}{b^{-6}}$
73. $\frac{2 a^{3}}{b^{-1}}$
74. $\frac{m^{2}}{n^{-3}}$
75. $\frac{x^{-8}}{3 y^{12}}$
76. $-\frac{20 p^{-1}}{5 q^{-3}}$

Biology

Biology Human blood contains red blood cells, white blood cells, and platelets. The table shows the sizes of these components. Simplify each expression.

Tell whether each statement is sometimes, always, or never true.

Blood Components	
Part	Size (m)
Red blood cell	$125,000^{-1}$
White blood cell	$3(500)^{-2}$
Platelet	$3(1000)^{-2}$

When bleeding occurs, platelets (which appear green in the image above) help to form a clot to reduce blood loss. Calcium and vitamin K are also necessary for clot formation.
78. If n is a positive integer, then $x^{-n}=\frac{1}{x^{n}}$.
79. If x is positive, then x^{-n} is negative.
80. If n is zero, then x^{-n} is 1 .
81. If n is a negative integer, then $x^{-n}=1$.
82. If x is zero, then x^{-n} is 1 .
83. If n is an integer, then $x^{-n}>1$.
84. Critical Thinking Find the value of $2^{3} \cdot 2^{-3}$. Then find the value of $3^{2} \cdot 3^{-2}$. Make a conjecture about the value of $a^{n} \cdot a^{-n}$.
85. Write About It Explain in your own words why 2^{-3} is the same as $\frac{1}{2^{3}}$.

Find the missing value.
86. $\frac{1}{4}=2$
87. $9^{-2}=\frac{1}{\square}$
88. $\frac{1}{64}=\square^{-2}$
89. $\frac{\square}{3}=\cdot 3^{-1}$
90. $7^{-2}=\frac{1}{\square}$
91. $10^{\square}=\frac{1}{1000}$
92. $3 \cdot 4^{-2}=\frac{3}{\square}$
93. $2 \cdot \frac{1}{5}=2 \cdot 5$
94. This problem will prepare you for the Multi-Step Test Prep on page 474.
a. The product of the frequency f and the wavelength w of light in air is a constant v. Write an equation for this relationship.
b. Solve this equation for wavelength. Then write this equation as an equation with f raised to a negative exponent.
c. The units for frequency are hertz (Hz). One hertz is one cycle per second, which is often written as $\frac{1}{s}$. Rewrite this expression using a negative exponent.

