Quiz for Lessons 7-5 Through 7-8

7-5 Polynomials

Write each polynomial in standard form and give the leading coefficient.

1. $4 r^{2}+2 r^{6}-3 r$
2. $y^{2}+7-8 y^{3}+2 y$
3. $-12 t^{3}-4 t+t^{4}$
4. $n+3+3 n^{2}$
5. $2+3 x^{3}$
6. $-3 a^{2}+16+a^{7}+a$

Classify each polynomial according to its degree and number of terms.
7. $2 x^{3}+5 x-4$
8. $5 b^{2}$
9. $6 p^{2}+3 p-p^{4}+2 p^{3}$
10. $x^{2}+12-x$
11. $-2 x^{3}-5+x-2 x^{7}$
12. $5-6 b^{2}+b-4 b^{4}$
13. Business The function $C(x)=x^{3}-15 x+14$ gives the cost to manufacture x units of a product. What is the cost to manufacture 900 units?

7-6 Adding and Subtracting Polynomials

Add or subtract.
14. $\left(10 m^{3}+4 m^{2}\right)+\left(7 m^{2}+3 m\right)$
15. $\left(3 t^{2}-2 t\right)+\left(9 t^{2}+4 t-6\right)$
16. $\left(12 d^{6}-3 d^{2}\right)+\left(2 d^{4}+1\right)$
17. $\left(6 y^{3}+4 y^{2}\right)-\left(2 y^{2}+3 y\right)$
18. $\left(7 n^{2}-3 n\right)-\left(5 n^{2}+5 n\right)$
19. $\left(b^{2}-10\right)-\left(-5 b^{3}+4 b\right)$
20. Geometry The measures of the sides of a triangle are shown as polynomials. Write a simplified polynomial to represent the perimeter of the triangle.

7-7 Multiplying Polynomials

Multiply.
21. $2 h^{3} \cdot 5 h^{5}$
22. $\left(s^{8} t^{4}\right)\left(-6 s t^{3}\right)$
23. $2 a b\left(5 a^{3}+3 a^{2} b\right)$
24. $(3 k+5)^{2}$
25. $\left(2 x^{3}+3 y\right)\left(4 x^{2}+y\right)$
26. $\left(p^{2}+3 p\right)\left(9 p^{2}-6 p-5\right)$
27. Geometry Write a simplified polynomial expression for the area of a parallelogram whose base is $(x+7)$ units and whose height is $(x-3)$ units.

7-8 Special Products of Binomials

Multiply.
28. $(d+9)^{2}$
29. $(3+2 t)^{2}$
30. $(2 x+5 y)^{2}$
31. $(m-4)^{2}$
32. $(a-b)^{2}$
33. $(3 w-1)^{2}$
34. $(c+2)(c-2)$
35. $(5 r+6)(5 r-6)$
36. Sports A child's basketball has a radius of $(x-5)$ inches. Write a polynomial that represents the surface area of the basketball. (The formula for the surface area of a sphere is $S=4 \pi r^{2}$, where r represents the radius of the sphere.) Leave the symbol π in your answer.

