

Quiz for Lessons 7-5 Through 7-8

7-5 Polynomials

Write each polynomial in standard form and give the leading coefficient.

1.
$$4r^2 + 2r^6 - 3r$$

2.
$$v^2 + 7 - 8v^3 + 2v$$

3.
$$-12t^3 - 4t + t^4$$

4.
$$n+3+3n^2$$

5.
$$2 + 3x^3$$

6.
$$-3a^2 + 16 + a^7 + a$$

Classify each polynomial according to its degree and number of terms.

7.
$$2x^3 + 5x - 4$$

8.
$$5b^2$$

9.
$$6p^2 + 3p - p^4 + 2p^3$$

10.
$$x^2 + 12 - x$$

11.
$$-2x^3 - 5 + x - 2x^3$$

11.
$$-2x^3 - 5 + x - 2x^7$$
 12. $5 - 6b^2 + b - 4b^4$

13. Business The function $C(x) = x^3 - 15x + 14$ gives the cost to manufacture x units of a product. What is the cost to manufacture 900 units?

7-6 Adding and Subtracting Polynomials

Add or subtract.

14.
$$(10m^3 + 4m^2) + (7m^2 + 3m)$$

15.
$$(3t^2-2t)+(9t^2+4t-6)$$

16.
$$(12d^6-3d^2)+(2d^4+1)$$

17.
$$(6y^3 + 4y^2) - (2y^2 + 3y)$$

18.
$$(7n^2 - 3n) - (5n^2 + 5n)$$

19.
$$(b^2 - 10) - (-5b^3 + 4b)$$

20. Geometry The measures of the sides of a triangle are shown as polynomials. Write a simplified polynomial to represent the perimeter of the triangle.

7-7 Multiplying Polynomials

Multiply.

21.
$$2h^3 \cdot 5h^5$$

22.
$$(s^8t^4)(-6st^3)$$

22.
$$(s^8t^4)(-6st^3)$$
 23. $2ab(5a^3 + 3a^2b)$

24.
$$(3k+5)^2$$

25.
$$(2x^3 + 3y)(4x^2 + y)$$

25.
$$(2x^3 + 3y)(4x^2 + y)$$
 26. $(p^2 + 3p)(9p^2 - 6p - 5)$

27. **Geometry** Write a simplified polynomial expression for the area of a parallelogram whose base is (x + 7) units and whose height is (x - 3) units.

7-8 Special Products of Binomials

Multiply.

28.
$$(d+9)^2$$

29.
$$(3+2t)^2$$

30.
$$(2x + 5y)^2$$

31.
$$(m-4)^2$$

32.
$$(a-b)^2$$

33.
$$(3w-1)^2$$

34.
$$(c+2)(c-2)$$

29.
$$(3+2t)^2$$
 30. $(2x+5y)^2$ **31.** $(m-4)^2$ **33.** $(3w-1)^2$ **34.** $(c+2)(c-2)$ **35.** $(5r+6)(5r-6)$

36. Sports A child's basketball has a radius of (x-5) inches. Write a polynomial that represents the surface area of the basketball. (The formula for the surface area of a sphere is $S = 4\pi r^2$, where r represents the radius of the sphere.) Leave the symbol π in your answer.