GUIDED PRACTICE

1. Vocabulary Define the term greatest common factor in your own words.
SEE EXAMPLE
p. 524

Write the prime factorization of each number.
2. 20
3. 36
4. 27
5. 54
6. 96
7. 7
8. 100
9. 75

Find the GCF of each pair of numbers.
10. 12 and 60
11. 14 and 49
12. 55 and 121

16. Samantha is making beaded necklaces using 54 glass beads and 18 clay beads. She wants each necklace to have the same number of beads, but each necklace will have only one type of bead. If she puts the greatest possible number of beads on each necklace, how many necklaces can she make?
15. $13 q^{4}$ and $2 p^{2}$
13. $6 x^{2}$ and $5 x^{2}$
14. $15 y^{3}$ and $-20 y$

SEE EXAMPLE 4
p. 526

Find the GCF of each pair of monomials.

PRACTICE AND PROBLEM SOLYMNG

Independent Practice	
For Exercises	See Example
$17-24$	1
$25-27$	2
$28-30$	3
31	4

Extra Practice
Skills Practice p. S18
Application Practice p. S35

Write the prime factorization of each number.
17. 18
18. 64
19. 12
20. 150
21. 17
22. 226
23. 49
24. 63

Find the GCF of each pair of numbers.
25. 36 and 63
26. 14 and 15
27. 30 and 40

Find the GCF of each pair of monomials.
28. $8 a^{2}$ and 11
29. $9 s$ and $63 s^{3}$
30. $-64 n^{4}$ and $24 n^{2}$
31. José is making fruit-filled tart shells for a party. He has 72 raspberries and 108 blueberries. The tarts will each have the same number of berries. Raspberries and blueberries will not be in the same tart. If he puts the greatest possible number of fruits in each tart, how many tarts can he make?

Find the GCF of each pair of products.
32. $3 \cdot 5 \cdot t$ and $2 \cdot 2 \cdot 5 \cdot t \cdot t$
33. $-1 \cdot 2 \cdot 2 \cdot x \cdot x$ and $2 \cdot 2 \cdot 7 \cdot x \cdot x \cdot x$
34. $2 \cdot 2 \cdot 2 \cdot 11 \cdot x \cdot x \cdot x$ and $3 \cdot 11$
35. $2 \cdot 5 \cdot n \cdot n \cdot n$ and $-1 \cdot 2 \cdot 3 \cdot n$
36. Write About It The number 2 is even and is prime. Explain why all other prime numbers are odd numbers.

