8-1

GUIDED PRACTICE

PRACTICE AND PROBLEM SOLVING

Independer	nt Practice
For Exercises	See Example
17–24	1
25–27	2
28–30	3
31	4

17. 18

21. 17	22. 226	23. 49			
Find the GCF of each pair of numbers.					

18. 64

Write the prime factorization of each number.

Extra Practice

Skills Practice p. S18 Application Practice p. S35

n	d the GCF of each pair of	num	bers.
5.	36 and 63	26.	14 and 15

Find the GCF of each pair of monomials.

```
28. 8a<sup>2</sup> and 11
                             29. 9s and 63.
```

31. José is making fruit-filled tart shells for a party. He has 72 raspberries and 108 blueberries. The tarts will each have the same number of berries. Raspberries and blueberries will not be in the same tart. If he puts the greatest possible number of fruits in each tart, how many tarts can he make?

Find the GCF of each pair of products.

- **32.** $3 \cdot 5 \cdot t$ and $2 \cdot 2 \cdot 5 \cdot t \cdot t$
- **34.** $2 \cdot 2 \cdot 2 \cdot 11 \cdot x \cdot x \cdot x$ and $3 \cdot 11$
- **36.** Write About It The number 2 is even and is prime. Explain why all other prime numbers are odd numbers.

19. 12

33.	-1	2.	2.	<i>x</i> •	x and	2.	2	• 7	•	<i>x</i> •	x	•	x

- **35.** $2 \cdot 5 \cdot n \cdot n \cdot n$ and $-1 \cdot 2 \cdot 3 \cdot n$

s ³	30.	$-64n^4$ and $24n^2$
		100 million

27. 30 and 40

20. 150 **24.** 63